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FIELD OF LONG INTERNAL LEE WAVES IN A PLANE-PARALLEL 

SHEAR LAYER 

V. E. Veden'kov UDC 532.59 

A linear formulation is used to examine a three-dimensional problem on long steady-state 
internal waves formed by the movement of a plane-parallel shear flow over a short (relative 
to the depth of the water) isolated seamount. In contrast to [i, 2] (where a general linear 
formulation was used in a study of a field of internal lee waves in a uniform flow of an ex- 
ponentially stratified fluid) and [3, 4] (where an asymptotic analysis was made of forced 
waves in a stably stratified flow with a velocity shift), in the present study we use a quasi- 
static approximation to obtain a series of double integrals representing an exact solution to 
the given problem for shear flow and arbitrary stable stratification of the fluid. The solu- 
tion is obtained in elementary functions for a mountain of model form. Examples are presented 
of calculation of the near region of a field of internal lee waves in uniform and shear flows 
for an empirical Weisshall-Brent frequency profile. 

i. Let a flow of an ideal, incompressible, stably stratified fluid of constant depth 
H travel from infinity with the velocity U(z) to an isolated underwater obstacle z = -H + 
hf(x, y). Meanwhile, maxlf I = i, h << H, f ~ 0 for x 2 + y2 ~ ~; x and y are the horizontal 
coordinates; z is the vertical coordinate. The x axis is directed along the incoming flow, 
while the z axis is directed vertically upward. The origin of the coordinate system coincides 
with the undisturbed free surface. 

In a quasistatic approximation, the steady-state wave field created by the obstacle in the 
the flow is described by the equations 

Uu~ + wU~ polp~, Uv~ = -~ ---- - -  - -  Po P~, 
Pz ---- - - P g ,  U p x  + wpo z = O, Ux + v v + w t = 0  

(I.1) 

with the boundary conditions 

P = Pog~, U ~ x  = ~v (z = 0) ,  w = h U / x  (z  = - - H ) ,  ( 1 . 2 )  

where u, v, and w are components of the vector of the wave velocities; p and p are perturba- 
tions of pressure and density; ~ is the displacement of the free surface; and p0(z) is the 
undisturbed density profile. The subscripts denote differentiation with respect to the corre- 
sponding coordinate. Along with (1.2), we need to satisfy the radiation condition. The lat- 
ter consists of the fact that all of the principal wave disturbances are concentrated down- 
stream (x > 0). 
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[5] 

R i  (z) = ev ~- ( z ) /U~ (z) > 0,25 ( -  H < z < % 

is satisfied, this condition establishing the absence of unstable natural vibrations. 

After we reduce system (1.2) to a single equation relative to w and we resort to Fourier 
transformation with respect to the variables x and y (with the parameters ~ and v), we obtain 
the following boundary-value problem to determine the Fourier transformations W of the verti- 
cal component of velocity: 

(pl~,~)~ -~ p~N~Z'-'q~ = 0 ( - -  H < z < 0): ( 1 . 3  ) 

~ ' z - -  gs = 0 (z = 0), ~ = ikcos 0.h  7 (z ---- - -H) .  ( 1 . 6 )  

H e r e ,  ~ = W/U; p~ = p0U~; N~ = Nfcf/Uf; 2~ ~ = (c cos 0)-2; c = U(0); N'-' = --gPoJPo i s  t h e  s q u a r e  o f  t h e  
W e i s s h a l l - B r e n t  f r e q u e n c y ;  k 2 __-V2 q_ v~; > = k cos 0; v = k sin 0;7(k, 0) i s  t h e  t r a n s f o r m a t i o n  o f  t h e  
F o u r i e r  f u n c t i o n  f ( x ,  y ) .  We w i l l  a s sume  t h a t  U(z):#= O, z ~ I--H, 0]. 

Let ~(z, 12) be the solution of Eq. (1.3) satisfying the boundary condition at z = 0: 

We w i l l  s e e k  t h e  s o l u t i o n  o f  p r o b l e m  ( 1 . 3 - 1 . 6 )  i n  t h e  f o r m  r = A ~  ( w h e r e  A i s  a c o n s t a n t ) .  
Having inserted this expression into the second condition of (i.4), we find A and, thus, 

= ikcosO.hTM(~ ~, z), M(L ~, z ) = O ( z ,  Lf ) /~(- -H,  ~2). 1 . 5 )  

U s i n g  t h e  r e l a t i o n  U~ x = w and t h e  i n v e r s i o n  f o r m u l a s ,  we o b t a i n  t h e  f o l l o w i n g  f r o m  ( 1 . 5 )  f o r  
t h e  v e r t i c a l  d i s p l a c e m e n t s  o f  t h e  f l u i d  p a r t i c l e s  

oc  

(x, g, z) = h (2a) -1 ~ ~ 7M (~,  z) k exp {ikB cos (0 - -  ?)} dk dO, 
LO 

( 1 . 6 )  

where integration over 8 is performed from 0 to 2~, with circumvention of the poles of the 
integrand in accordance with the radiation condition: R~ = x ~ ~-yf; x = R cos ?; y = R sin ?. 
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2. The function ~(z, ~=) is an integral function of the parameter Z 2, which means that 
the function M(Z 2, z) is meromorphic. Its poles are eigenvalues of the Sturm-Liouville prob- 
lem corresponding to (1.3-1.4). Let 

( 2 2 2 2 

be the set of all efgenvalues and orthonormalized eigenfunctions. Using the theorem on the 
expansion of meromorphic functions into partial fractions, we find that M(A 2, z) can be re- 
presented bya uniformly convergent series [6]: 

M(k  ~-, z) = %(z) --  p~(-- H) ~ q~,~ (z){(g,2 _ ~,~)-~ q_ g~-2], 
~q=l  

~o (~1 = r (z, o)/a) ( -  H,  0), ~o~ (z) = "On (z) ~ ( -  H). 
(2.1) 

With allowance for (2.1), we change (1.6) to the form 

.:(z,y,z) = h{4 + ~=1~ ~ ( ~  + r~,)}, 4=%(z)l(x,y),  

Re ~-I j ~ i?cos20.k(fr-2--n~cos20)-lexp{ikRcos(O-- ?)}dkdO, 
L O  

In2 = n-2.[ (x, y), a~ = - -  Pl (-- H)  r (z) n*~,~ ~, f r  = c~n/n. 

( 2 . 2 )  

Equation (2.2) represents the exact solution of the problem in the form of a series in 
the modes of the internal waves. Then expanding ~0(z) into a generalized Fourier series in 
a system of eigenfunctions {On} and using the well-known properties of the Sturm-Liouville 
problem [71, we can show that 

" t l : l  

With allowance for (2.1) and (2.3), we find from (2.2) that 

(2.3) 

[hi(x, y ) ,  ~ - -  H 

It follows from this that the terms I 0 and In2 (n = i, 2, 3, ...) in (2.2) describe local ef- 
fects in the immediate vicinity of the obstacle. These effects, connected with flow around 
the obstacle, depend weakly on the stratification and the velocity shift. The terms Inl(n ffi 
i, 2, 3 ...) represent the field of forced internal waves downstream. 
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Using the perturbation method and the condition of a "solid cover" on the surface, we 
obtain an explicit expression for I0 

3. In numerical calculations, the obstacle was modeled by the function 

/(x,  g) = [(x/A) 2 + (g/B) 2 + i ]-3/2, 

-](k, O) = A B  e x p  [ - - k x ( 0 ) ] ,  • = (A 2 c o s 2 0  + B 2 sin20)1/2.  

In this case, the integral of k in (2.2) is calculated analytically and expression (2.2) re- 
duces to the form 

I o-~- a~  ReABn -1 cos  2 0 . A  - l ( 0 )  d0 I~ 2 , 

h(O) = (fr  -2 - -  n 2cos  20)[x(O)  - -  iB  cos  (0 - -  ?)]2.  

(3.1) 

Integration in (3.1) is performed from -z/2 to 7/2, with circumvention of the poles of the 
integrand along a small semicircle lying below the poles at Re < 0 and above them at Re > 0. 
Analogous to [8], the remaining integral in (3.1) can be calculated by means of the residue 
theorem and the solution of the problem can be calculated in elementary functions. The cum- 
bersome final expression for the displacements of the fluid particles is omitted here due to 
space limitations. 

2 and eigenfunctions ~n(Z) were found by numerical solution of the The eigenvalues A n 
spectral problem for assigned distributions N(z) and U(z). We took the empirical profile 
N(z) represented in Fig. 1 by the solid line as the model of the distribution of the Weishall- 
Brent frequency. Ocean depth H in the measurement region was 900 m. The distribution of 
flow velocity in the depth direction (dashed line) was given by the model distribution with 
allowance for the principal properties of shear flows. 

The characteristic horizontal scales of the underwater obstacle were chosen from the 
condition A, B ~ 10H, which justifies the use of the longwave approximation [9] and is con- 
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sistent with actual conditions. The values taken for the parameters A, B, and h in the cal- 
culations were A/H = 15, B/H = 15, and h/H = 0.i. 

To determine the effect of a velocity shift on the characteristics of lee waves in the 
immediate vicinity of an underwater obstacle, we performed calculations with and without 
allowance for the velocity shift, other conditions being equal. The velocity of nonshear 
flow was taken equal to U(0). 

It was found that the main laws governing the formation of the field of forced waves in 
shear flow are the same as in a nonshear flow [2, 9]. Wave disturbances created by an indi- 
vidual internal mode with the number n are localized in the neighborhood of vertical planes 
making the angle • with the xOz plane if fr n = cl n > 1 (supercritical mode). The value of 
~n is determined by the formula ~n = arcsin (fret). If fr n < 1 (subcritical mode), then the 
contribution of this mode is significant only in the neighborhood of the underwater obstacle 
and decreases rapidly with increasing distance from it. Figure 2 shows the horizontal struc- 
ture of an individual internal mode. The results shown from calculations of the sixth [sub- 
critical, fr~ = 0.97 (a)] and seventh [supercritical, fr7 = 1.12 (b)] modes for the above 
model parameters are accurate to within the multiplier h~n(Z). Due to symmetry, the figure 
shows only half of the wave pattern. The largest contribution to the overall wave field is 
made by the first supercritical mode (i.e., the mode with the number ~ such that frE_ I < i < 
fr~). The value of ~ determines the width of the region associated with the main wave per- 
turbations. It should be noted that the values fr n = 1 in the given model are resonance 
values. Estimates of the amplitudes of the waves for the critical flow velocities cannot be 
obtained within the framework of the linear long-wave approximation. In this case, a special 
analysis is needed with allowance for the effects of nonlinearity and dispersion - as has 
been done, for example, for waves in a uniform fluid [i0]. 

The main differences between the wave fields in the shear and uniform flows are seen in 
the overall wave pattern. Figures 3 and 4 show vertical [at the distance y/H = 200 (a)] and 
horizontal [at the depth z/H = -0.45 (b)] sections of a field of lee waves without and with 
an allowance for the velocity shift, respectively. Due to symmetry, only half the wave pattern 
is shown on the horizontal sections. Summation in (3.1) was continued until the following 
condition was satisfied in the theoretical region 

m a x  [ ~n (z, y) -- ~n-1 (x, Y)] / max[ ~n-1 (x, y) I < 0,0t; 
x , y  X,y 

83 



where ~n is the value Of ~ calculated from (3.1) with allowance for n terms in the sum. It 
follows from the comparative analysis that allowance for the velocity shift leads to a change 
in the width of the region corresponding to the main wave distortions, a decrease in the 
amplitude of the internal waves, and a significant change in the vertical structure of the 
lee wave field. The higher modes make a larger contribution to the overall wave field in a 
shear flow than in a nonshear flow. This last finding is consistent with the suggestion, 
made in [ii] after analysis of data from observations in the equatorial zone of the Indian 
Ocean, that higher modes may be dominant in the overall wave motion. 
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